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a. Course Code: PBT-810 

b. Title: Plants; Genotypes to Phenotypes 

c. Credit Hours: 3(3-0) 

d. Learning Objectives 

(i) To help students understand the fundamental genetic and 

evolutionary processes that shape levels and patterns of genetic 

variation in populations  

(ii) To enable them to apply population genetic concepts to interpret 

genetic data from populations 

(iii) To make them familiar with a number of approaches to analyzing 

and inferring biological function from data 

(iv) To enable them to write and discuss knowledgeably about the 

methods, analyses and interpretation of recent literature. 

e. Outcomes 

Students will be able to interpret quantitative genetics research 

Effectively present research findings from landmark papers in quantitative 

genetics theory 

Describe the impacts of quantitative genetics theory in shaping modern 

plant improvement and genetics research 

Demonstrate critical thinking of how to apply quantitative genetics theory 

to solving novel or emerging breeding problems 

f. Content  

  QTL mapping  

  History of quantitative trait locus (QTL) analysis 

  Review the principles of QTL mapping 

  Establish the main advantages and disadvantages of QTL mapping 

  Review QTL analysis methods 

  Linkage disequilibrium (LD) and coalescent theory 

  Major considerations of experimental design prior to undertaking a QTL  

   analysis Challenges of having too few or too many markers when 

doing     QTL analysis and their solutions 
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  Factors affecting the detection of small effect QTLs 

  Dominance/additivity (d/a) statistic; use of the -1, 0 and 1 values 

  Method for analyzing GXG (two-locus interactions among QTL) and the  

   main difficulties of this method 

  Transgressive variation and the underlying genetic architecture to explains 

   it 

  Distributional analysis or selective mapping and its importance at the time  

   of its proposal 

  Genetic Architecture  

  Structure and Mixed Models 

  Genomic Selection  

  Genomic BLUP decoded 

  Genomic heritability 

  Multivariate approaches 

  Genotype x Environment interaction 

  Factors affecting Genomic selection accuracy and long-term genetic gain 

  Genomic selection using low vs. high marker density   

  g.  Details of lab work (if applicable) 

Not applicable 
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